

3255 West Stetson Avenue Hemet, CA 92545-7799 USA Tel 909 652-6811 Fax 909-652-3078

e-mail: info@mccrometer.com Web site: http://www.mccrometer.com

June 9, 1998

V-Cone vs. Orifice Plate Comparison

Feature	V-Cone	Orifice plate
Installation	0-3 diameters upstream	6-70 diameters upstream
requirements:	0-1 diameters downstream	2.5-4.5 diameters downstream
	with no straightening vanes	with no straightening vanes
Recommended	50 inches of water column	100 inches of water column
maximum DP for an		
application:		
Headloss:	For different beta ratios:	For different beta ratios:
Will vary with different	0.45 74% of DP	0.35 85% of DP
beta ratios. The	0.55 61% of DP	0.45 77% of DP
headloss will be	0.65 49% of DP	0.55 68% of DP
expressed as a	0.75 36% of DP	0.65 58% of DP
percentage of DP	0.85 24% of DP	0.75 46% of DP
created.	Since the V-Cone has less	From Miller†
	recommended max. DP, the	
	total headloss can be	
	substantially lower.	
Long term performance:	V-Cone will protect its edges	All flow must pass through
	with boundary layer formed as	center of orifice plate.
	flow passes over cone surface.	Particles, liquids, etc. which
	Beta edge will not be directly	flow along the walls of the
	impacted by erosive materials.	pipe will pass over the sharp
		edge, wearing it continually.
Plugging, coating:	The centrally located cone	A flat plate will collect build
	does not block with a flat plate.	up and coating by the directly
	The increase velocity at the	impact of the flow fields. The
	cone area and the "swept	downstream areas will also
	through" design allows for	collect particles and debris.
	little build up or coating on the	
	meter surfaces.	
Wet gas:	V-Cone allows free flow of	Orifice plate can hold a
(See wet gas CD-ROM	liquid to go by the cone.	substantial amount of water
available through		downstream of the plate.
McCrometer.)	10.1	4.4
Turndown:	10:1 minimum ‡	4:1
Signal noise:	Low signal to noise ratio, even	Higher signal to noise ratio.
	in disturbed flows.	

Paliability	The V-Cone is reliable and	No moving parts, but edge
Reliability,		
repeatability,	repeatable over time due to	wear will change performance
reproducibility:	self-cleaning and low wear.	over time.
	Like the orifice plate, there are	
	no moving parts.	
Proven product:	The V-Cone has a ten-year	Orifice plates are proven over
	history of success in markets	a long history. Meters are
	as varied as municipal water	reliable based on historical
	measurement to industrial	database and flaw-free
	offshore platform	manufacturing.
	measurement. Each V-Cone is	
	individually calibrated so any	
	manufacturing variations are	
	discovered before delivery.	
Cost: purchase	Medium	Low: crude machined plate
1		Medium : quality plate with
		flanges and taps
		High : fittings for plate
		removal and multiple plates
Cost: installation	Low	High
Cost: maintenance	None	High
Cost. mameriance	Routine maintenance is not	111611
	needed or recommended with	
	the V-Cone, thus removal	
	and/or inspection of the tube	
	section is not necessary. If	
	•	
	removal is necessary for	
	pigging or other purposes, an	
	insertion V-Cone is available.	26.11
Cost:	Low to medium	Medium to high
pumping/compression		

- † R.W. Miller, Flow Measurement Engineering Handbook, Third Edition, McGraw-Hill, 1996
- \ddagger Despite the conservative accuracy statements on DP transmitters, V-Cone and single DP transmitter flow systems typically see $\pm 1.0\%$ of rate system accuracy or better. This is due to the stable and consistent signal generated by the V-Cone. Low level signals are then much easier for the DP transmitter to measure.

Example: recent CEESI calibration showed 13:1 turndown with a system accuracy of $\pm 0.54\%$ of mass flowrate using only one transmitter.